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Error Questions in the Computation of Solution Manifolds of
Parametrized Equations,

Werner C. Rheinboldt
University of Pittsburgh, Pittsburgh,PA 15238

1 .introduction

Equilibrium problems for many physical systems are modelled by

parameter dependent nonlinear equations

(1.t) ~ F(z,! k) 0. .

Under fairly general conditions the set of solutions (z,) of -4--.)-forms a r

differentiable manifold, and, typically in applications, interest centers not so
much on computing a few solutions but rather on analysing the form and special

features of this manifold. 4nfthis paper we-idey some of the sources of the
errors which are necessarily arising in such a computational analysis.,,

For the presentation we adopt the same setting as in [18] or [33]. Let X - -
and Y be real Hilbert spaces and F: X -4 Y a Fredholm mapping of class CKr

r_2, and index p i 1 for which the domain contains an open set S of X. A point
x e X is regular if the Jacobian DF(x) maps X onto Y. Then it is well known that

the set of all regular solutions,,

(.2) M= x ;x e S, F(x) =0, x regular), -r!
is a p-dimensional Cf-manifold in X without/ boundary. By restricting

consideration to this regular solution manifold we have assumed that a suitable
unfolding of the problem has been chosen, (see e.g. [20]). The tangent space
TxM at xe M may be identified with the ke I of DF(x); that is,

(1.3) TxM = ker DF(x) = {u; u e X, DF(x)u=0)}" --

I This work was in part supported by the Office of Naval Research under
contract N-00014-80-C-9455 and the National Science Foundation under grant
DCR-8309926.



whence

(1.4) NxM = (TxM)-L = rge DF(x)*

is the normal space at the point'. A given p-dimensional subspace T of X
induces a local coordinate system of M at x r M if

(1.5) Tr- NxM ={0}.

More specificallly, if (1.5) holds then there exist open neighborhoods V1 and V2

of the origins of T and X, respectively, as well as a unique Cr-1 - function
w:V 1-- T-L ,w(O) = 0, such that

(1.6) MrV 2 = {yE X; y=x+t+w(t), tE V1},

(see e.g. [33]). If (1.5) holds then x is a non-singular point with respect to the
given coordinate space T, else it is a singular point or foldpoint with respect to
T. Clearly, any point x E M is regular with respect to its the tangent space TxM.

As indicated already by the form of (1.1), many applications involve a

natural orthogonal splitting

(1.7) X=ZE)A , Z = A'

of the domain space X into a state space Z and a p-dimensional parameter
subspace A. Then interest centers on determining the singular points with
respect to A. In equilibrium problems these may be expected to be the points
where a change in the stability behaviour of the physical system occurs.

The basic procedures for the computational analysis of such a manifold
M are the continuation methods. When M has dimension p > 1, these methods
require a restriction to some path on M and then produce a sequence of points
along that path. Obviously, it is not easy to develop a good picture of a multi-
dimensional manifold solely from information along such paths. This led

t As usual, the asterisk denotes the Hilbert space adjoint.
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recently to the development of methods for the computation of simplicial
approximations of p-dimensional subsets of M. Two intrinsically different
methods of this type have been presented in [1], [2] and [35], [36].

Besides these methods for computing certain sets of points on M, another
important class of numerical procedures concerns the detection and
computation of foldpoints on M with respect to a given coordinate space T, such
as the natural parameter space A. There is a large and growing literature about
such methods; further references can be found in [23],[24],[26].

This presentation will address only some aspects of these two classes of
f' procedures. There are, of course, further related computational tasks. For

example, we may wish to compute contour lines or contour surfaces of a
prescribed functional on M. Alternately, many applications lead to the need for
computing certain solutions of some differential equation on a manifold. This is
equivalent with the solution of a differential-algebraic system of equations
which, in the case of ordinary differential equations, is a topic with its own
burgeoning literature.

Our interest here is not to elaborate on these various computational
techniques but in identifying some of the errors arising in their connection. More
specifically, in the next section we discuss the error induced by a discretization
of the basic mapping F. Then, in Section 3 we turn to error questions connected
with continuation methods while the final Section 4 identifies related questions
in the computation of simplicial approximations of parts of M as well as of
foldpoints on the manifold.

2. Dlscretizatlon Errors

In practice, the mapping F often represents a differential operator
involving several parameters which then, for the computation, has to be
approximated by a finite-dimensional analogue. More specifically, suppose that
we have a natural splitting (1.7) of the domain space X and that, as in (1.1), our
problem is written in the form

(2.1) F(z,X) = 0 z E Z ,Xe A.
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Then only the state variable z needs to be discretized; in other words, the

approximating equations will have the form

(2.2) Fh(Zh, X) = 0, Z e Zh , X E A,

where now Fh maps a discretized space Xh = Zh E A to another such space Yh.
Since the parameter space is unchanged we may expect that the regular
solutions of the discretized problems form a p-dimensional manifold Mh in Xh.

Frequently, Xh can be imbedded into X which then allows for a direct
comparison of the two manifolds M and Mh. However, in order to measure the
distance between these two manifolds, and hence the discretization error, we
need to choose some coordinate system. More specifically, suppose that at the
desired point x e M a local coordinate system has been induced by the p-

dimensional subspace T of X. In other words, in a neighborhood of x the points
of M are represented as x(t) =x+t+w(t), te T, w(t)e T -L, w(0)=0. If the

approximation is sufficiently close, then some part of Mh should belong to the
domain of validity of this local coordinate system and hence there should be a
unique point Xh on Mh which has the same coordinate t=0 as x; that is, which is
in x+T -L . We may expect also that T induces a local coordinate system at Xh on

Mh, and hence that, locally near Xh, the points of Mh are representable in the
form xh(t) =Xh+t +wh(t) , t E T, wh(t)e T-L, Wh(O) = 0. Now it makes sense to
measure the discretization error as the distance IIx(t)-xh(t)ll in X between
points on the two manifolds which have the same local coordinate t • T. In other
words, the discretization error is a strictly local concept and depends on the

* choice of the particular local coordinate system.

If a natural parameter decomposition (1.7) is available and the
coordinate system is induced by the choice T = A ,then we cmaepoints with
the same X-values and the discretization error measures the difference

between the states of these points. This is often proposed as the definition of
the discretization error. But, clearly, it is only a feasible choice as long as A

induces a local coordinate system at the point x e M ; that is, as long as x is not
foldpoint with respect to A. Since such foldpoints are of central importance in
many applications, this is certainly not a generally acceptable approach.
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The development of a rigorous theory of these discretization errors is a
fairly recent undertaking. For one-dimensional solution manifolds a priori

3 estimates were first developed in [12] and then [14]. The latter results were
generalized in [16] to manifolds of arbitrary dimension. In the three parts of [12]
the cases of non-singular points, limit points, and simple bifurcation points were
treated separately and specific local coordinates were used at each of these
points. In [14], [16] general local coordinate systems in the above sense are
utilized to avoid the requirement of distinguishing between the different types of
points.

t,.

All these results involve a family of approximate problems (2.2) which
V converge in some sense to the original problem (2.1) when the real

discretization index h > 0 tends to zero. More specifically, the results in [14],[16]
are based on projection methods; that is, a family {Ph} of finite-rank projections
is assumed to be given on the range space Y for which limh4OPh y = y for each
y e Y. Then, with a bounded linear operator A from X to Y such that ker A = A,
and Az=AIZ is an isomorphism onto Y, we can define the approximate

mappings

Fh:Xh -- Yh, Xh=Zh(DA, Yh =PhY, Zh = QhZ,Qh= AZ PhAz.

Now, if a particular stability condition holds, the estimate

CO 11 (I-Ph)Ax(t) x(t) - xh(t) I C1 II (I-Ph)AX(t)II,

is valid for all sufficiently small t e T and h > 0 with constants C1>Co>0 that are
independent of h and t..

A different approach was taken in [17]. There, only a single discretized
equation is considered instead of a converging family of such equations, and
estimates are obtained which correspond to the local error estimates in the
numerical solution of initial value problems for ordinary differential equations.
These estimates have been applied to an analysis of the behavior of the
socalled reduced basis techniques pioneered in structural mechanics (see
(15],[28]).
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These a priori estimates are of considerable theoretical interest, but for

*" the practical application we require a posteriori estimates which measure the

error of the specific computed points on the approximate solution manifold Mh.

Such estimates are needed not only to judge the reliability of the computed
results but also to control adaptive procedures aimed at achieving dependable
results within a given range of accuracy at minimal cost.

For finite element discretizations there exists a growing literature on the

computation of such a posteriori estimates; we refer only to [4] and the two

4 proceedings [3], [6] where many other references can be found. These results

concern largely linear problems, but more recently they are also being

extended to nonlinear problems, see e.g., [5], [8],[32], [34]. For example, the

approach in [34] supposes that -- in the notation of the a priori estimates -- the
local coordinate space T belongs to the approximate domain space Xh. If the

desired exact point x and the approximate computed point xh are sufficiently

close, then it can be shown that

(2.3) 1Ix - xhll = (1 + o(1) )IIYII as IIx- xhIl 0

where y is the solution of the linearized equation

(2.4) F(xh) + DwF(xh)y = 0, W = T-L .

0% The discretization of (2.4) has the exact solution Yh = 0 and hence Ilyll is the

discretization error of (2.4) which can be estimated by means of one of the

known a posteriori estimators for linear equations.

Various computational examples for such a posteriori estimates in the

*. case of finite-element discretizations of one-dimensional manifolds have been
given in the cited articles. Corresponding estimates for two-dimensional

manifolds are used in the nonlinear adaptive finite element solver NFEARS

developed jointly by I.Babuska, C.K.Mesztenyi, and W.C.Rheinboldt. These
results indicate that the effectivity of these error estimates corresponds to that for

linear problems and that the computational cost is only a fraction of the cost of
solving the nonlinear problem. In general, the errors vary considerably along a
solution manifold which shows the importance of adaptive mesh-refinements.
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However, there remain many open problems. In fact, it appears to be

reasonable to require that such estimates (a) apply to large classes of

3 problems, discretizations and error norms, (b) are dependable and cost-

effective in the range of engineering accuracies, (c) allow for the use of most

applicable local coordinate system, and (d) provide also estimates of the error

of computed foldpoints. At this time we are still very far from such type of

pestimates, and accordingly it is well justified to characterize the computation of a

posteriori estimates for nonlinear parametrized problems as being in an early

stage of development.

As stressed before, all these various error estimates are local in nature
and hence cannot provide information about the comparative global shapes of

the exact and approximate manifolds. In particular, it turns out that the two

manifold may have a different number of connected components. In other

words, there may be numerical solutions which do not approximate exact

solutions. Such spurious solutions have been observed in many contexts (see

e.g. [9],[19],[27]).

A very simple example for such spurious solutions arises in connection

with the boundary value problem

(2.5) u" + Xsinu =0 , 0 < s < 1, u(0)=u(1)=0

which can be viewed as a model of the classical Euler rod. For X < 0, there

exists only the trivial solution u --0, which is physically plausible since under

pure tension the rod should remain straight. Nevertheless, discretizations of

(2.4) constructed either by finite differences or by finite element techniques

exhibit non-zero solutions for certain negative values of X (see e.g. [5] ior some

picture). These particular spurious solutions are not especially disturbing since

they occur in a region of little interest and disappear to infinity when the mesh is

refined.

Unfortunately, not all spurious solutions are so "harmless". For instance,

the following problem

(2.5) u" + a (1-u) exp(-J(l+u))- 0 ,0 < t < 1, u(0) u(1) 0



~8

models an exothermic chemical reaction in a slab. It can be shown that all
solutions must have the symmetric property u(t) = u(1-t), t e [0,1]. However, a

discretization, such as

(2.6) -Xi-l+2xi-Xi~ l = h ar (1-xi) exp(-?;J(l+xi)), i=1,...,n-1, x = Xn= 0, h = 1/n,

models the same reaction only inside each one of a collection of n cells while

- .across the interfaces there is merely mass transport. As a consequence
unsymmetric solutions of (2.6) exist which branch off from the (discretized)
symmetric solution at certain symmetry breaking bifurcation points. These

branches tend to the exact symmetric solution when h goes to zero, but, clearly,
they do not correspond to any similar feature of the original problem, (see e.g.

,- [101] [11]).

For practical applications it is certainly of considerable interest to provide

error estimators which identify spurious solutions. In [5] it was shown that, for a
problem such as (2.4), the spurious solutions carry error estimators which are
much larger than, say, any tolerance acceptable in engineering calculations

and hence which can be rejected on that basis. There is considerable need for
a more detailed study of this question.

3. Continuation Methods

As noted earlier, the basic procedures for the computational analysis of
our manifold M are the continuation methods and these methods require an a

* priori restriction to some path on M. In other words, if M has dimension p > 1,

then our (discretized) equations must be augmented by p-1 suitable equations
which specify the desired path on M. As a consequence the continuation

methods are always applied to an equation of the form

(3.1) Fo(x) = 0, Fo: Rn -- Rn'l n>2

involving an operator Fo which is of class Cr, r >2, on some open set in Rn. We
denote its regular solution manifold by N = {x e Rn; Fo(x)=O ; rankDFo(x)=n-1}. It

is readily verified that, on the set of regular points of Fo, the mapping

I,..
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(3.2) u: Rn-* Rn, DFo(x)u(x) = 0, Iu(x)112 = 1, det (DFo(x)T,u(X)) > 0

defines a Cr-l-vector field. Let xO E N be a given point and y:J - N the unique,

maximally extended solution of the initial value problem

(3.2) y'(s) = u(y(s)) , V S E J, y(0) =X ,

then the trajectory y(J) is exactly the connected component No of N containing
x° (see, e.g., [33]). This connection between the initial value problem (3.2) and

its first integral (3.1) has been used by numerous authors.

All continuation processes begin from a given point x0 E M and produce
a sequence of points xk, k=0,1,2,..., which approximate points of N. For any k..0,
the step from xk to xk+1 corresponds to an implementation of the local
coordinate representation (1.6). More specifically, if T = span{t}, t E Rn, t # 0, is

a local coordinate space of N at xk , then, for any fixed y E Rn, the Jacobian of

the augmented equations

(3.3) (tt(x-y) = 0

* .is non-singular for all x in some neighborhood of xk. Thus, if y approximates a
point of N in that neighborhood, then it follows readily that (3.3) has a unique

N solution xk+1 E N whic can be computed by means of a locally convergent
iterative process applied to (3.3) and started, say, at y.

The various continuation methods differ in the choice (a) of the
coordinate space T, (b) of the predicted point y, and (c) of the local iterative
process for solving (3.3). In most cases a linear prediction y = xk+hv is chosen,
whence (b) subdivides into the choice (bl) of the predictor-direction v e Rn, and
(b2) of the step-length h > 0. The so-called pseudo-arclength methods use for t
and v the tangent vector u(xk) of N at xk , while in the PITCON code (see [30]),
only the prediction v = u(xk) is along the tangent and T is specified by a
suitable natural basis vector t = ei, i = ik, of Rn. On the other hand, in the

0PLTMG code [7] both t and v are a linear combination of u(xk) and a specified
vector characteristic for the problem. The local iterative process (c); that is. the
corrector, usually is a chord-Newton method with the Jacobian of the mapping



(3.4) at xk or y as the iteration matrix. Other corrector methods include, in

particular, the multigrid approaches and some chord Gauss-Newton method.

In the construction of the predicted point it is highly desirable to estimate

the interval of validity of the local coordinate system at xk. This is equivalent with

the requirement of estimating the distance from xk to the nearest foldpoint of N

with respect to the chosen local coordinate system. At present, there are no

reliable methods for that purpose. A second critical question concerns the error

ly-xk+l1 of the prediction and many processes indeed utilize estimates of this

error. For example, in PITCON such an estimate is obtained as the difference

between the chosen linear predictor and some quadratic extrapolation involving

in turn an approximation of the local curvature. This is then applied in the

construction of the step length h.

Whenever, the corrector applied to (3.4) converges to a point where the

Jacobian remains non-singular, then this limit must be a point of N, But no

estimate of the prediction error by itself can guarantee that the next point Xk+1

will again belong to No and not to some other component of N. An important

control, which can be employed here, is the orientation of No given by (3.2).
This is indeed incorporated in PITCON and has proved capable of identifying

many of the potential "jumps" of the process between components of N. But, of

course, there remain cases where jumps to components with identical

orientation are possible. Clearly there is still much room for other estimates of

the prediction error and for further controls that signal when the process has left

the connected component No.
.o

7 V Since all solutions of (3.4) with non-singular Jacobian are points of N

(although not necessarily of NO), the quality of the approximation of N by the

computed points {xk} is controlled by the size of the termination error of the

.. corrector. The estimation of this termination error has been the topic of many

,S, studies, but from the convergence theory of iterative processes for nonlinear

systems of equations it is well-known that exact bounds for these errors require

information about the mapping in a sufficiently large neighborhood of the

solution (see e.g. [13]) . Moreover, these bounds do not take into account the ill-

conditioning introduced by round-off. In fact, it is well-known that the uncertainty
region of the solution of a system as (3.4) can be quite large. For example, if the

quartic polynomial

04



X4 -202 X3 + 1529 x 2 -514898 x + 6497400 =0, x eR 1,

with the roots x = 49,50,51,52 is evaluated by means of the standard Horner
scheme in rounded 8-decimal digit arithmetic, then the size of the uncertainty
interval {x; Ix-521 < 6} of the largest root is about 8 = 0.09, (see, e.g., [31]).

Clearly, the occurence of ill-conditioning of such a magnitude may destroy
completely the reliability of the overall process. The control of this phenomenon
appears to be one of the most promising areas for the application of interval
techniques in connection with continuation methods.

4. Triangulations and Foldpoint Calculations

As observed already in the Introduction, continuation processes require

us to develop a picture of the p-dimensional manifold (1.2) solely from
computed information along a priori specified paths. The method introduced in
[351, [36] for obtaining simplicial approximations (triangulations) of open subsets
of the manifold uses almost the same tools as these continuation methods and
hence has also a similar error behavior.

Suppose that our problem is defined by the finite dimensional mapping

(4.1) F: Rn -- Rm, n= m+p, p >_ 2

and that M denotes its regular solution manifold. The triangulation process then
begins with the choice of a simplicial decomposition 1 of RP, such as, for
instance, the well-known Kuhn-triangulation, or, for p=2, a triangulation of R2 by
means of equilateral triangles. The aim is to transfer the knots of some part of Z,

together with their connectivity information, from RP onto M. As in any
continuation methods, a starting point x on the manifold M is assumed to be
known. In its basic form the process then consists of two steps: First a suitable
"patch" of the reference triangulation X is mapped onto the affine tangent space
x+TxM. using an appropriate basis of TxM. Thereafter, a locally convergent
iterative process is applied to "project" the resulting knots of the mapped
simplices from x+TxM onto the manifold M. These two steps are then repeated
with one of the computed points on M in place of the original point x. But, of
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course, knots of Z that have already been mapped onto M will not be used

again.

In order to ensure that the images of the simplices of Z on M form a
simplicial approximation of a portion of the manifold, we need to choose bases

on the tangent spaces TxM which change smoothly from point to point. In other
words, we require a moving frame on some open subset Mo of the manifold M.
Recall that a moving frame of class Cs, O<s!r, associates with any x E Mo an
ordered basis (frame) {u1 .... ,uP} of TxM such that each coordinate map ui, 1_i_<p,
from Mo into the tangent bundle TM defines a vector field of class Cs on Mo.
Hence, we need an algorithm which generates for each point x of M an n x p
matrix U(x) with orthonormal columns such that DF(x)U(x) = 0 and that the
mapping U: Mo --+ RPxn is of class Cs on Mo. Standard methods for computing

tangent bases generally do not produce continuously varying matrices U(x).

A moving frame algorithm of the desired form has been introduced in
[35]. It uses an n x p reference matrix Tr with orthonormal columns and assumes
that some method is available for computing at any x e M an orthonormal basis
matrix U(x) of TxM which, of course, is not expected to depend continuously on
x. Let Mo be the open subset of M where the subspace T of Rn spanned by the
columns of Tr induces a local coordinate system. If x E Mo and we compute the
singular value decomposition A(x)T(U(x)Tr)B(x) = D(x), then it was shown in [36]
that the mapping x -4 U(x)A(x)B(x)T is of class Cr-1 on Mo and hence defines
the desired moving frame. If the dimension p of the manifold is small in
comparison with the space dimension n, then the principal cost of this algorithm
derives from the computation the original basis matrix U(x).

There are various ways of implementing the computation of the tangent
bases U(x) and of the local iterative process. For instance, in the cited articles

the QR-factonization
". DF(x)T R

gives U(x) as the last p columns of the orthogonal n x n matrix Q, and the chord

Gauss-Newton process, defined by

(i) solve RTZ = F(yk) for ze RP, (ii) yk+l = yk.Q(z,0)T, k=0,1,2,...,
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converges locally to the unique point y* E M with the coordinate t = y°-x in the
local coordinate system induced by TxM. On the other hand, in NFEARS the

original equations are augmented, as in PITCON, by appropriate unit basis
vectors of Rn , and the tangent basis is derived from a triangular factorization.
Then a chord Newton method is applied as the local iterative process.

There are two controlling aspects in this process. One of them concerns
the behavior of the local iterative process and hence raises analogous
problems as for continuation processes. As before, three basic issues are

again the estimation of the prediction error and of the termination error, as well
as the control of the effects of round-off. In addition, the earlier problem about
the interval of validity of the local cocordinate system becomes here a question
about the numerical behavior of the moving frame algorithm. In particular,
whenever we apply the algorithm at one of the already computed knots x on M,
we should be able to determine whether this point x still belongs to the open

subset Mo of M where the subspace T of Rn spanned by the reference matrix Tr
induces a local coordinate system. This leads again to the question of

estimating the distance from x to the set of foldpoints of M with respect to T. As
mentioned earlier there exists no method for this. Fortunately, numerical
evidence suggests that, in connection with the triangulation process, this lack is
often not very critical. A related open problem concerns the quality of the
computed moving frame when we come close to the boundary of Mo.

As noted in the Introduction, in many application interest centers on

computing the foldpoints of M with respect to a natural parameter space A. But
space limitations allow us only to give here a very cursory summary of some of
the basic issues as they relate to our present setting. As defined earlier, a point

r"- x e M is a foldpoint with respect to A if the intersection AN=Ar'NxM is non-trivial;

that is, equivalently, if there is a non-zero tangent vector of x which belongs to
the state space. The integer q = dim(AN) is the first singularity index of x. With
the natural splitting (1.7) we can write our equation in the form (2.1). Then a
foldpoint x = (z,X) e M has first singularity index q exactly if the range in Y of the
partial derivative DzF(x) of F has co-dimension q. The cut Mr)(x+AN -L) of M

through x orthogonal to AN characterizes the type of the foldpoint (see e.g. [18]).

We mention here only a few of the numerous computational problems
associated with foldpoints:
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(a) Detection problem: Given a set {xl,...,xk} of points in X and appropriate

additional information about the problem at these points, determine whether
some foldpoint x* of M is in a neighborhood of this set.
(b) ApDroximation error: For a given approximation x e X of a foldpoint x* of M,

estimate the distance II x - x*li in X between these two points.
(c) Foldpoint computation: For foldpoints x* of M of a prescribed type design
iterative processes which are locally convergent to x* from any sufficiently close

approximation x E X.

(d) Discretization error: If Xh is a computed foldpoint of the discretized equations
(2.2) which approximates a foldpoint x of the original problem (2.1), compute an

a posteriori estimates of the distance I1x - XhI•

(e) Foldset triangulation: Compute a simplicial approximation of a set of
foldpoints of M of a prescribed type.

Not only the problems(b) and (d), but also all the other problems involve

- error estimation questions. For example, problem (a) requires in essence an
inclusion procedure for the zeros of certain nonlinear mappings. This is most

easily seen in the case of a mapping (3.1) underlying a continuation method
where we assume that the natural splitting (1.7) is given. Then, theoretically, the
foldpoints of the regular solution manifold N are the points x e Rn which solve

the constrained problem

(4.2) d(Fo(x))) =0, rank(DFo(x)) = n-1.

Evidently, on the basis of information at finitely many points alone we cannot

expect to obtain a guaranteed inclusion result for (4.2); at least some
information about Fo in a suitable neighborhood of the given set of points is

needed here. This is already seen for very simple inclusion results. Suppose

that A = span{v} and that x1 and x2 are two successive points produced by a
continuation procedure. If both points belong to the same connected component

of N, and uJ = u(xi), j=1,2, are the corresponding oriented tangent vectors (3.2),
then sgn(vTul) * sgn(vTu 2) implies that there is a limit point of odd order
between the two points. Evidently, without further information about Fo we
cannot verify that both points belong to the same connected component of N

IL
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and without that assumption the statement need not hold. On the other hand,
suppose that we only know that x1 ,x2 e N and that we orient the tangent vectors
by means of (ul)T(u2 ) > 0. Now, if the determinants det(DFo(xj)T,uj), j=1,2, have
different signs and the points are sufficiently close, then they cannot belong to
the same connected component of N, and hence there must be a bifurcation
point of odd order "between" them. These observations can be extended readily
to the more general mappings (4.1) using points xi E M, j=l,...,p+l, which, for
instance, form the corners of a p-simplex. But, even without entering into any

details this discussion already indicates that procedures for the general
problem (a) indeed require information about the behavior of the mapping on
appropriate sets and, in general, also a restriction to specific types of foldpoints.

Problem (b) depends on the measure of the distance between the
foldpoint x* and its approximation. Suppose that we consider again the finite
dimensional case (4.1); then the size of the smallest principal angle between
the m-dimensional normal space rge(DF(x)) and the p-dimensional natural
parameter space A gives some information about the approximation. These
principal angles are readily computed, but again further information about the
mapping is needed to derive from this, say, an estimate IIx-x*II. Except for
simple special cases, there appears to exists, at present, no reliable,

computable estimator for this norm difference.

p As noted in the introduction, there is i large literature on local iterative
methods for computing certain types of foldpoints. Many of these methods

, .begin with a suitable augmentation of the given equation such that the Jacobian
of the resulting system is square and non-singular. This allows then the
application of a more or less standard iterative process for their solution.

Obviously, it would lead to far to enter here into any details of the numerous
augmentations that have been considered. But, clearly, in all these cases the
behavior of the process is once again essentially controlled by the error of the
initial approximation, the termination error of the method, and the influence of
round-off on the reliability of the result. It should also be noted that for specific

types of foldpoints there are other approaches which utilize the particular
characterization of these points. In particular, for limit points on one-dimensional
manifolds, as they arise in connection with continuation methods, there exists a
wide variety of such procedures, as, for instance, the comparative study [25]

shows.
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As noted in Section 2, a computed foldpoint of the discretized problem

(2.2) need not approximate a corresponding foldpoint of the original problem

(2.1). But if it does, then it is certainly of considerable interest to estimate the

distance between these two points. There appear to exist only very few results

along that line. We mention here merely the a posteriori estimates given in [5]

for the case of simple limit points and for a finite element discretization of a two-

point boundary value problem. Further results in the important area of problem

(d) are certainly very much needed.

Finally, in connection with problem (e) we mention only the methods in

[22] and [29] for computing sequences of points along certain paths of limit

points on two-dimensional regular solution manifolds. All these methods are

closely related to the continuation procedures and hence involve essentially

the same error questions. There appear to exist, at present, no methods for

computing simplicial triangulations of higher dimensional sub-manifolds of

foldpoints of any type.
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